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Abstract

Current solutions to integrating private data with
public data have provided useful privacy metriegls
as relative information gain, that can be used to
evaluate alternative approaches. Unfortunately,ythe
have not addressed critical performance issues,
especially when the public database is very laiige
use of hashes and noise yields better performarare t
existing techniques while still making it difficdtr
unauthorized entities to distinguish which datamite
truly exist in the private database. As we showeher
leveraging the uncertainty introduced by collisions
caused by hashing and the injection of noise, we
present a technique for performing a relationalnjoi
operation between a massive public table and a
relatively smaller private one.

1. Introduction

Data is often generated or collected by various
parties, and the need to integrate the resultisgadate

Terence Critchlow
Lawrence Livermore National Laboratory
critchlow@linl.gov

efficient manner possible (shown in Figure 1).
Ignoring privacy restrictions, the problem is reeddo
a distributed database problem that can be solyed b
shipping the scientist's table to the warehouse and
performing the join at the warehouse. Howeverh# t
scientist's data set is proprietary, it cannot leats
verbatim to the warehouse. The naive solution is fo
the scientist to download the entire public talolénis
local machine and perform the query there. Butdo d
so would be prohibitively expensive if the publible
is very large or the communications link is limited
Assuming that schema reconciliation has already
been done, the problem can be formalized as the
following. Table R=(A,B) from a small private

databaselb is to be joined with tabl&s = (B,C) from

a large data warehousiev on columnB, yielding the
desired tablé&oal = RS TableR is private and the
identity of the data items iR can not be known by any
other party other than the owner db. Table S is
publicly available and accessible.

It is assumed that the system operates in a semi-
honest model, where both parties will behave

data sources has been addressed by the researclaccording to their prescribed role in any given

community [1]-[6]. Although the heterogeneity ofeth

protocol. However, there are no restrictions on the use

schemas has been addressed, most data integratiorof information that has been learned during the data
approaches have not yet efficiently addressed the exchange after the protocol is complete.is treated

privacy requirements imposed by data sources.

as the adversary. To describe the level of privacy

Legal and social circumstances have made data preserved, relative information gain is used.

privacy a significant issue [7]-[8], resulting inet need
for Hippocratic databases (i.e., “database thdude
privacy as a central concern”) [9], particularly in
sharing scientific or medical data. Without strong
privacy guarantees, often scientists refuse toestiata
with  other scientists for reasons, such
subject/patient confidentiality, proprietary/seivat
data restrictions, competition, and potential donfl
and disagreement [10].

When sharing scientific data, privacy quickly

as

To address this problem, we augment the well-
known semi-join framework [11], “hiding” the actual
values of the join column of tabR by hashing them
and including additional artificial values. The resulting
collection is sent to the data warehouse to retrieve a
subset of tableS that includes the data required to
answer the original query along with some false
positives. Although, this method will not provide for
absolute privacy (i.e., the adversary can infer nothing
about the contents of tabR), the hash/noise method

becomes an issue. Suppose that a scientist wishes t can guarantee an upper bound on the amount of

perform a query across a table in his private degab

and a table in a public data warehouse in the most small

privacy loss when data is exchanged. By sacrificing a
fraction of privacy, this method incurs
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significantly less transmission costs than downloading
the contents ofdlw to the private database. As one
might expect, this approach has roots in information
hiding [12].

Section 2 provides a short overview of challenges
related to privacy preservation and related works are
discussed. Section 3 describes the privacy metric.
Section 4 formally presents our hash/noise approach.
Section 5 outlines a proof of concept implementation
and initial experimental results are studied. Finally,
section 6 summarizes our work and explores future
roads of research. The appendix summarizes the
notation used throughout the paper.

2. Challengesand Other Related Works

There are several challenges in privacy-preserving
data integration, ranging from defining privacy,
correctness, to efficiency. This section provides a short
summary of the most relevant of these challenges.

2.1. Defining Privacy

First, a metric is needed to measure the amount of
privacy loss that is incurred when data is exposed. In
[13], variable privacy is proposed as a method in
which some information can be revealed for some
benefit. Privacy loss is likened to a communications
channel, in which the difference between a posteriori
(i.e., after data has been revealed) and a priori (i.e.,
before data has been revealed) distributions of data
measures privacy loss. In [14], the likelihood of what

can be inferred about a query posed by the user is usedt

as a measure of privacy loss. In [15] and [16], a metric
for measuring the inherent uncertainty of a random
variable based on its differential entropy is used as a
measure for privacy. The common factor among all
these proposed metrics is relative information gain,
which has also been used in many privacy-preserving

applications [17], making it a likely candidate for
measuring privacy loss.

2.2.Correctness

The second challenge is producing exact and
correct answers to queries posed by users. Work in
privacy-preserving data mining [18]-[21] have focused
on changing the actual values of data items so that the
values of data items are hidden but the distribution of
the perturbed data is similar to that of the original data
distribution. However, the exact original data values
can not be accurately recovered. While this is
acceptable in data mining applications, since data
mining looks for trends and patterns, not exact values,
for data integration, the exact answers are required.

2.3.Efficiency and Privacy

The third challenge is to perform the join
operation efficiently without sacrificing much privacy.

If the join operation is partitioned into multiple
selection queries (one query for each join column
value in tableR), the problem is transformed into
hiding the identity of the queries frodw while still
being able to retrieve the result of such queries from
dw. It has been shown that to completely guarantee the
privacy of the queries, the entire contentsiwfshould

be downloaded [22]. However, in some cases this is
not practical. If the user is willing to sacrifice a small
portion of his data privacy, the join operation can be
done without retrieving all of table

Commutative encryption-based approaches have
also been proposed to solve the private data integration
problem as well [23]-[25]. These approaches take
advantage of a family of encryption functions in which
the order that data item are encrypted by two different
keys does not matter. Although such an approach hides
the contents of query results from one or both parties,
it requires the exchange of both parties’ encrypted data
so that they can both mutually encrypt each others’
data. This makes such an approach expensive.

Oblivious transfer [26]-[28] allows the user to
secretly pose a query and only receive the result of the
guery and nothing else. The party providing the answer
to the query does not learn the actual query. However,
under an oblivious transfer protocol, encryption and
ransmission of all data items held tw to the user
are required.

There has also been work in private information
retrieval schemes [22][29], which allow a user to
retrieve information from a database while maintaining
the privacy of his query. In these schemes, téble
would be replicated at multiple sites. Given a query,



multiple queries are generated and sent to each of sitewhen it receives the hashed values. The candidate set

such that no site can learn the actual original query by

acting alone. The value of a record in coluBrof
table R is not revealed to the data warehouse.
However, many users working with sensitive data
would be unwilling to trust such a system if there is no
way to enforce non-collusion among the sites in the
system, especially if the user simply sees the
aggregation of the various sites as a black box.

2.4.0Other Related Works

The proposed hash/noise method takes an
approach similar that to the one discussed in [14],

is then filtered byb to retrieve the final result.

Furthermore, privacy control by hash truncation
alone as suggested by [14] is very coarse. For
example, suppose that a 16-bit hash does not satisfy
the privacy constraint given a tali® so a 15-bit hash
was selected instead. However, the 15-bit hash doubles
the collision rate of the 16-bit hash, doubling the size
of the candidate set for the join result. Whereas, the
same 16-bit hash with some additional artificial hash
values could have satisfied the same privacy constraint
and yield far fewer records in the candidate set.

There has also been work in using Bloom filters
to make joins in a distributed database system more

which takes advantage of collisions caused by hashesefficient and private [31]-[33]. Like Bloom filters, our

to introduce uncertainty in the true contents of a
private database’s table. A HMAC [30] hash value is

approach makes use of the uncertainty introduced by
the collisions induced by hashing. However, we

generated for each data item in both tables each time aaugment the simple hashing approach by introducing
query is posed. The size of the hash is varied to control artificial noise values to control the level of privacy

the amount of privacy loss: when the hash size is

desired by the user in exchange for efficiency.

increased, there are fewer possible collisions among Furthermore, Bloom filters will not allow the use of

join column values, and thus less uncertainty in the
identity of a join column. Specificallyb first hashes
the values of the columB from tableR to truncated
HMAC values small enough to satisfy the privacy
constraint posed by the user. Then it transmits its
hashed values and hash sizeltg where the relevant
subset of tabl& is identified by performing a join on
R's hashed values witBs hashed values (generated
by the same HMAC hash key over columrof table

traditional indexing mechanism to speed up querying.
If a Bloom filter was used to summarize the join
column of tableR and transmitted talw, dw would
have to apply the Bloom filter to each join column
value in tables

Work in querying remote encrypted data [34]-[35]
is also related to private data integration. However,
when querying remote encrypted data, it is assumed
that the encrypted data is owned by the user but exists

S). Because a new hash with a new size is generatedon a public server. In the problem we are addressing,

for each query to vary the level of privacy, traditional

the data on the public server is generally publicly

indexing mechanisms can not be used to accelerate available and is not owned by any one user.

guerying time and extra computation time is required
to compute the hash values of all data items in both

tables. As a result, the join operation becomes a very

expensive operation.

3. Privacy Metric

For our work, we use relative information gain as

In contrast, our hash/noise method approach uses 5 pasis for a metric to measure privacy loss when data

a set of fixed hashing and artificial hash values to
control the amount of uncertainty in the identity of the
join column values in tabl&, thereby controlling the
level of privacy loss incurreddw would contain an
auxiliary table having a fixed set of columns. The hash
values of join column values of tabfare computed
offine and are indexed. During query timg will
select the hash function that will yield the best
performance. Artificial hash values will be injected
into the data set communicated dev by db, if the
selected hash function does not sufficiently satisfy the

privacy constraint. Because the hashes are known in

advance,dw can store the resulting hash values
directly in the database and does not need to

is exchanged. The remainder of this section defines
this metric and explains our motivation for selecting it.

3.1.Entropy and Relative Infor mation Gain

Entropy and relative information gain were
initially proposed in [30]. Entropy is the amount of
uncertainty in a random variabl. If the random
variableX can take on a set of finite valuesx,,...%,
then its entropy is defined as:

H(X)==Y 1 P(X =x)log, P(X=x) (1)
The conditional entropyH(X|Y) is the amount of
uncertainty inX after Y has been observed. Relative

recompute them for each query. A candidate set of information gain, or the fraction of information

tuples that belong to the result is returned bydhe

revealed by aboutX, is defined as:



H(X)-H(X|Y
(X)-H(X]Y) @
H(X) ;
Privacy loss can be thought as the amount of

information gained by an adversary about the contents |
of set of sensitive data items, which in this case are the .

RIG(X;Y) =

contents of columB of tableR.

3.2. Absolute Privacy L oss

If dw (i.e., the adversary) has no knowledge about
the distribution of columiB of tableR, then it can only
assume that each value that belongs to the dothain
are equally likely to occurLet R be a random
variable describing the columB values (the only
information revealed in a semi-join loip), of a tuple
in tableR. Absolute privacy losp.ys is defined as the
relative information gain orR when any data sét is
revealed todw by db. By doing a simple substitution
with equation 2, absolute privacy loss is:

_H(R)-H(RIN) _log, |U|-H(R|N)
H(R) log, |U |

®3)

abs

3.3.Relative Privacy L oss

It is possible that an adversary will make use of
any available information to infer the contents of table
R, in particular the contents of tabl since it is
publicly available. Thus, relative privacy loss is
defined as:

_HRIS)-HRIN)
rel H (ﬁ 1S)
In this case, the adversary uses the distribution of

values in columrB of tableS as a hint to the possible
distribution of values in columnB of table R

H (F~2 | S) (the uncertainty of the join column values of

a tuple in tableR given the contents of tab® can be
found by directly applying equation 2 on the
distribution of values in columB of tableS. Because
this metric captures the information gained by an
adversary with respect to its current knowledge in
contrast to absolute privacy loss, it is the metvi
have chosen for evaluation of our approach.

(4)

4. Privacy-Preserving Distributed Join

Figure 2 outlines how to findR<igS when a
privacy constraint exists. The first step projects
columnB from tableR and applies a hashing function
h to each value in columB, yielding tableh(R) with
column h(B). Step 2 will generate artificial hash
values, yielding table. In step 3, tabléN is derived

i 4. Jinp iv
| aata
— |  warehouse

5. F = Nipdyp)S

Z||

Figure 2. Privacy-preserving distributed join.

from the union oh andh(R) TableN is then shipped
to the data warehouse in step 4. At the data waseho
in step 5, tablés and N are joined on columin(B),
yielding tableF. TableF is the set of possible tuples
from dw that will belong to the final result of the join
operation. Then tablE is shipped talb in step 6. The
final result, Goal, is found by filtering out the false
positives inF by joining tabledR andF.

4.1.Privacy Constraint Satisfaction

Because different hash functions have various
(range) sizes, they yield different collision ratearge
hash functions tend to yield low collision rates;
whereas, small hash functions tend to vyield high
collision rates. A hash functidmwith a high collision
rate introduces large amounts of uncertainty about
whenh(x) is known. This uncertainty is used to mask
the true identity of a join column value in talfe
Hash functions also hide clusters of data by hashin
clustered values to uniformly-distributed hashed
values. A hash function with a high collision réues
the side effect of “compressing” the values of omiu
B from tableR since a single hash value can be used to
represent multiple actual values. However, if the
collision rate is too high, many false positivedl wi
occur in F due to the high number of collisions,
yielding high unnecessary transmission costs. Tius,
is important to use an appropriately sized hashing
function to yield an acceptable level of perfornganc
while providing enough uncertainty to meet the
privacy constraint.

It is computationally expensive to dynamically
compute the hash values resulting from a new hash



function with a different size each time a query is

Note that ;| < [h (R)], so it may be necessary to

posed on a large data warehouse table. Furthermore,add artificial hash values to the $¢sent bydb to dw

dynamic generation of values prevents indexing
mechanism from being used to during the join
operation in step 5. Our alternative approach is to
predefine a set ah hash function$y,h,,...,h, with m
different sizes to be used to precompuotealues for
each record in tabl8 on columnB. The result of each
of these hash functions on colun® are stored
explicitly (in m different columns) and indexed.

When the user wishes to perform a join on his
private tableR and the public tabl&, he requires that
the privacy loss incurred with respect to the cotgef
tableSto not exceeg. In other words:

. HRIS)-H(RIN) ©)
H(R|S)

Assuming a uniformly-distributing hash function,
the number of real values that hash to the same has

rel

value is estimated to bﬁ:ll_ll where|U| is the size of

the domain of possible values for colunih (the
universe) andH| is the range size of hash functibn
H is the set of possible values in the rangé.ofor

any given hash valuél%ll possible values could have

been used as input into the hash function and could
have belonged to tabR For a set ofN| hash values,
there is a total of N |% possible values that data
items in columnB of tableR can take on with equal
probability. Thus,H(R|N )is estimated as:

51N = U |
H(R|N) =1 N+ 6
(RIN) ng(l ||Hlj (6)

By combining equations 5 and 6, the constrainfNJn
for a givenp, is found to be:

INp L a-poH®ES) @
U |
Applying equation 7 to each hash function, the
minimum number of hash valugsl|,|r4|,...,|r| for all
m available hash functions alw can be found.

in addition toh(R). This can be done by randomly
selecting|N;| - |h(R)| hash values that belong to the
range ofh;. The set of artificial hash values is denoted
asn;, whereN; =h (R)On;.

4.2.Performance Estimation

To select the appropriate hash function for the
data exchange, the transmission cost normalizetd wit
respect to the brute-force method (i.e., downlogdin
table S from dw to db) cost can be estimated. It is
assumed that transmissions costs will dominate the
execution costs of the overall join operation sitioe
system will be operating over a limited
communications link and search time is kept lowhwit
the use of indexes.

If the brute-force method was used|S| time
units are required to transnj&| records frontdw to db
where ¢, is the cost associated with transmitting a
single record returned kyw in bytes. The cost of the
hash/noise method can be estimated to be the sum of
the cost of transmitting hash values frdimto dw and
the cost of transmitting the set of candidate tsifle
returned bydw to db. The cost of sending the hash
values iscy|N;| time units for a hash functidm, where
Ch is the cost associated with transmitting a sitgigh
value. The cost of the tuples returnedduyto db after
the hash values have been sentcfB|. Thus, the
transmission cost normalized with respect to thaesr
force method is summarized as:

Costzcthi |+c | F |
C | S| (10)
Ost=ﬂ+Ch|Ni|
ISI ¢S]

Equation 10 shows that as the cost-ratifc,
approaches zero, the cost of sending hash values
ch N |

¢ | S|
performance of the hash/noise method is simildinab
of the brute-force method; whereas, wheh<< |S|,

becomes small. A§-| approachegS| the

We can estimate the number of unique hash values we see significant performance improvement over the

generated by hashing each tuple B with h;
analogously to [14] as:

R
1
R)les=| 1-| 1-—— | |IH; 8
IR (R) les [ ( |Hi|j ]I I (8)

Then the actual size of the hash valueNethat db
would send talw, if hash functiorh, was selected, is:

IN; [= max(i .| i (R) lest) 9)

brute method. The goal is to minimize this
performance metric.

Since|F| is not known until query timéf| can be
estimated to be the average number of tuples rdurn
by dw given the characteristics of the hash function
and the contents afw. It is found that on average for a

given hash value, the number of values in colnn



. . S
that will collide to the some hash vaIueTls—l| for a
i

hash functiorh;. Consequently, the average number of

ISL N ). The

tuples returned bydw to db is

|

normalized transmission costbst for a hash function
h; is estimated to be:
1Sl
|Hi |

¢ ISl

The hash functiof; (with an associatel; found

with equation 9) that yields the lowest normalized
transmission cost according to equation 11 is tedec
as the hash function for the data exchange and is
denoted byh. The seth(R) is computed with hash
functionh. The number of hash values to be sent using
h, denoted by\| is the maximum of the corresponding
INi| and|hi(R)I.

Ch I Nj [+¢ I N; |

cost = (12)

5. Implementation and Results

A preliminary implementation was done in Java
with MySQL [37] via MySQL’s JDBC connector [38].
Borrowing a technique from [14], eight hash funatio
were created by simply truncating the result ofel w
known hash function, in this case MD5 [39]. Eigbtss
of hash values were generated for eAdolumn value
by truncating the result of the MD5 hash of a cailBn
value to various bit sizes ranging from 8 to 16 .bit
The hash value sets were stored and indexedwin

along with their respectives table. H(F~€|S) was

computed offline and stored for ea8table.

Three sets of data were used for three instances of
table S. The first two were each comprised of 2.5
million synthetically generated tuples. The valwés
column B for table S were generated with a uniform
distribution of values from 0 to 99,999 for thesfiset.
The second set's column B values were generatdd wit
a Gaussian distribution of values from 0 to 99,968
a mean of 50,000 and a standard deviation of 1000.
The third set of data was the “alignment block ah r
chain of chromosome 10" table, taken from the UCSC
Genome Browser Project [40]. The genome data set
contains approximately 2.4 million records and was
biased towards low join column values.

The size of the domaib for the uniformly and
Gaussian-distributed join column values was 100,000
There were approximately 123,598 different values f
the join column in the genome data set, so the dfize
domainU for join column values was approximated to
be 2. Unless otherwise specified, the cost-ragits;

was ¥ (i.e., the cost of transmitting of a haslueas
half the cost of transmitting a record from tagje

For each experiment, ttRetables were generated
randomly. TheR tables to be joined with a uniformly
or a Gaussian-distributed tab&were generated by
randomly selecting a value for coluni from the
range of 0 to 99,999. ThR tables to be joined with
the genome data were generated by randomly seajectin
tuples from the “summary information about chain of
rat” table (also available from [40]). For each aat
point plotted, fiveR tables were randomly generated,
each of which was joined with tabl8 using the
hash/noise method fives times. The maximum and
minimum observed values of each studied parameter
were ignored, and the rest were averaged. They are
shown in the following graphs.

5.1. Execution Time Analysis

To begin the execution time analysis, the size of
tableR in relation to the size of the set of possible key
valuesU (|R]/|U]) is varied and the required relative
privacy loss is to not exceed 0.01. Figure 3 shioovs
execution time varies afR|/|U| changes. Figure 4
shows how the size of the transmitted $it{sand |F|
varies as|R|/|U| changes. For each of the execution
time tests, the transmission cost of transmittirigagh
value was equivalent to transmitting a 4-byte iateg
and the cost of transmitting a tuple from S was
equivalent to transmitting two 4-byte integers.

For a Gaussian distribution and genome data
distributions of tableS execution time increases
linearly as|R|/|U| increases. Also the sizes of the et
and sef behave similarly as the execution time curve.
Thus, the transmission of the two intermediary sets
makes up a significant portion of the executionetim
for these two data distributions.

Execution Time vs [RIU|
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Figure 3. Execution times for variable
Target pye = 0.01 and ch/c, = Y.

IRI/|U.
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Figure 4. Set sizes |N| and |F| for variable |R|/|U|. Target

For a uniform distribution of tablg, the execution

x10° IFl vs IRIU|

Pret = 0.01 and cp/c = Y.

cost. From this figure, it can also be seen that th

time behaves as a step function, transitioning when execution times for join operations operating ower

|[RJ/|U] = 0.6. Figure 4 shows th§ll| increases along
with the execution time curve; wheredB| remains
relatively constant. Thus, the transmission offNéin
contrast to bothN and F as in the Gaussian and

genome data distribution are lower than for the
Gaussian distribution, which are usually lower tfan
the uniform distribution. Thus, less uniform
distributions will usually result in better exeani

genome data distributions) makes up a significant times because they are more biased and thus w#l ha

portion of the execution time. As shown in a later
graph in Figure 8, whe]/|U]| transitions from 0.6 to
0.7, the system experiences the largest incredsasim
size |H|, resulting in far fewer -collisions and,
consequently many more hash values are sethvto
meet the privacy constraint.

Comparing the behavior of the various
distributions, the execution time of the distrilmbijein
operation is directly related to the size of talied,
and F for the Gaussian data distribution and the
genome data distribution. However, for a uniform
distribution, the execution time is generally
independent ofR|/|U|, except when there is a large
transition in  hash values used, because
transmission of noise and false-positives domitia¢e

Execution Time vs Target Relative Privacy Loss
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Figure 5. Execution times for variable target
[R|/JU] = 0.1 and cy/c; = Y.

Prer-

less entropy. Uniform distributions will have thesh

entropy of any distribution, requiring either faora

hash values or far more false positives to be metir
by dw to satisfy the privacy constraint.

In the second set of execution time analyses,
|[R/|U] is fixed to 0.1 and the maximum privacy loss, or
the target relative privacy logs,, is varied. Figure 5
shows how execution times vary as the tanggt
changes. Figure 6 shows h¢M| and|F| vary as the
targetp, changes in the second graph. Intuitively, as
the privacy constraint is relaxed, execution tirf@s
both the Gaussian and uniform data distributions
decrease since fewer hash values are needed gfy sati

the the privacy constraint. For any join operation wos

targetpy is greater than 0.21, the execution tinjisi,
and |F| remain constant. In such caspggR)| is large
enough to satisfy the privacy constraint withouy an
noise. Thus, there is very little performance dayn
increasing the target relative privacy loss gre#tian
21% for private tables containing only 10% of tb&at
possible keys.

Figure 5 also shows that the execution time of the
genome data set remains relatively constant, with
minor variations in execution times due to the
randomness of data items in Betnd consequently the
high randomness of data items in BetFurthermore,

IN] remains constant regardless of the target privacy;
and consequently, only the varying sizes of tdble
contribute to the variation in execution times, ethis
determined by the random selection of tuples itetab
R. This is shown in the second graph of Figure & Th
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Figure 6. Set sizes |N| and |F| for variable target

variance in execution times is more than that ef th
other distributions because the data in the gerdatee
set is much less uniformly distributed than theeoth
two distributions.

In summary, when targegt is low, there is more
variation in execution times for the Gaussian and
uniform distributions. In the high target privagnge,
there is little or no change in execution timesttses
target privacy is increased. In other words, the

hash/noise method has a more dramatic effect when these distributions.

the targepy is low.
5.2. Absolute Privacy Loss Analysis

Figure 7 shows how absolute privacy loss varies
as|R| changes and the target, is fixed at 0.01. For
the uniform distribution, the absolute privacy lass
kept very low and close to the targgy of 0.01 since

Absolute Privacy Loss vs [R|U]

IR

Figure 7. Varying absolute privacy. Target
0.01 and cy/c; = Y.

Prel =

x10° |F| vs Target Relative Privacy Loss
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0 0.1 02 03 04 0.! 0.
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Pre- [R|/JU] = 0.1 and cp/c; = Y.

satisfying the relative privacy loss constraint far
uniform distribution is almost identical to satisfy an
absolute privacy constraint of the same magnitude.
However, for the Gaussian and genome data
distributions, the absolute privacy loss differgaglty
from the target relativg,., because far less effort is
required to satisfy the relative privacy loss coaist
than that required to satisfy an absolute privarss|
constraint of equal magnitude due to less uniforinit
For non-uniform distributions,
achieving low absolute privacy loss would be much
more expensive than achieving low relative absolute
privacy loss; whereas, the cost for achieving totta
uniform distribution would be relatively the same.
Figure 7 also shows that gR]/|U| increases,
absolute privacy loss decreases. In genergRERJ|
increases, the data revealeddbyto dw increases. As
a result, the pool of possible values that an adwgr
can use to infer the actual values of colusnim table
R increases as well, resulting in far greater uader
about the actual value of a coluf@rvalue in tableR.

5.3.Hash Selection Analysis

Figure 8 shows that the size of the selected hash
function that yields the lowest transmission cost
increases a|/|U| increases, for all distributions. The
graphs show that as the uniformity of taBlimcreases,

a wider range of hash values are required to a¢coun
for any variations in sizes of tabR provided by a
user. For the uniform distribution, hash sizes irsagg
from 10-bits to 16-bits are required, dependingtmn
size of |R|. For the Gaussian distribution, hash sizes
ranging from 12-bits to 16-bits are required. Hinal

for the genome data set, hash sizes ranging from 14
bits to 16-bits are needed. This experiment shiws t
necessary hash sizes that need to be precompuded an
stored indw for the variousStable distributions.
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Figure 8. Hash sizes for variable  |R|/|U]. Target
Pret = 0.01 and ch/c, = Y.

5.4.Transmission Cost Analysis

In this set of analyses, the transmission costs of
the hash/noise method in relation to the bruteef@e
studied.

brute-force method, depending dR|/|U|. For the
skewed genome data set, the transmission costdvarie
significantly depending on the size of/|B|.

The second graph shows that transmission cost
steeply decreases as the tagggtincreases from 0.01
to 0.2 for both Gaussian and uniform distributicfst
any targetp, greater than 0.2, transmission costs are
25% of that of the brute-force method, for all
distributions. The general behavior of steeply
decreasing and flattening out was predicted by the
estimated normalized transmission cost curvesthaut
actual transmission costs were not accurately
estimated. For the less uniform genome data, the
transmission costs remain relatively constant \gith
average of 25% of that of the brute-force method, f
all target relativep, values and wheiR|/|U| is 0.1.
Like for the other distributions, the general bebrnof
the observed transmission cost curve was predinted
the estimated transmission cost curves, but theahct
transmission costs were poorly predicted.

Figure 10 compares the attained normalized
transmission costs of the hash/noise method weh th

The observed normalized transmission cost based COsts of simple semi-joins (i.e., no privacy coaistis

on equation 10 using the obsenjé&dl is compared to

enforced). The graph shows thiR|/|U| is directly

the estimated normalized transmission cost based onProportional to what the cost of the semi-join vebul

equation 11. The first graph of Figure 9 shows that
hash/noise method works well whéR|/|U| is very
low, and especially well when the distribution ayk
values in tableS is very biased. For uniform
distributions of tableS and a targep, of 0.01, the

be. The graph summarizes how much more the
hash/noise method costs to satisfy a maximum velati
privacy loss of 0.01 in comparison to a semi-join,
which has no privacy. Using the hash/noise metftod,
is very expensive to achieve a maximum relative

transmission costs of the hash/noise method was 90% Privacy loss of 0.01 when the distribution of the

or more than the transmission costs of the bruteefo

column B values of theS table is uniform, and

method, costing almost as much as the brute-force €Specially whenR|/|U] is very low. On the other hand,
method. For a Gaussian-distributed data set, the When theStable is non-uniform, and especially when

transmission costs ranged from 35% to 95% of the

Transmission Cost Normalized wrt Brute Force Method vs [RIU]

1

L L L L L L L I )
01 02 03 04 05 06 07 08 09 1
IRIAV|

(@)

Figure 9. Varying normalized transmission costs wit

[R|J/|U] is very high, there is much less additional cost
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Figure 10. Attained normalized transmission
costs of join with privacy constraints and join
without privacy constraints. Target  p,q = 0.01
and cy/c; = ¥2. Cost of transmitting the key of a
record from db is half the cost of transmitting

a tuple from dw.

for the added privacy that the hash/noise method
provides for in comparison to a simple semi-join,
which provides for no privacy.

5.5. Cost-Ratio Analysis

Finally, the effect of the cost-ratio, or the ratio
between the transmission costs of sending a hdak-va
and the transmission costs of sending a tuple, is
examined. In this set of experiments, the tapgetvas
fixed at 0.01 andR]/|U| was fixed at 0.1. Figure 11
shows that the cost-ratio has very little effecttba
overall performance of the system because the numbe
of tuples in seE makes the cost of transmitting $et
the dominating cost of the hash/noise method,
regardless of the cost-ratio between sending hash
values and tuples from et

6. FutureWork

From our initial results presented, several future
research directions can be pursued. There is atoeed
develop a more accurate estimation of performance.
Our current estimation uses the average number of
collisions to estimate the number of tuples to be
returned bydw, which works well for uniformly-
distributed data but poorly for non-uniformly
distributed data. In future research, several aufdit
features, such as the distribution of taBleshould be
incorporated into a new estimate.

This work also needs to be expanded to infinite
domains (e.g., people’s names), and specifically to
develop a privacy loss metric reflect privacy lass

these domains. The current privacy loss metric
operates on finite and discrete domains. If indinit
domains are used, our method may be too consegvativ
since there are an infinite number of actual vathes
may hash to a given hash value

Our method only protects the privacy of data over
a single query. However, it may be possible for
adversaries to make inferences over multiple gserie
Thus, some mechanism may be needed to prevent such
inferences from being made. Perhaps, some type of
caching technique can be used to avoid exposing the
same private data set more than once. In such a
technique, the data warehouse would operate on
cached hashed values (including artificial hashies)
rather than on new sets of hashed values for tme sa
set of private data provided b, if a new tableSis to
be joined on a previously joined tablR in a
subsequent query.

Another future research direction is the use of a
Bloom filter to reduce the size of the $ttised by the
hash/noise method. The data warehouse would send to
the private database a Bloom filter based on the
contents of tableS before the hash/noise process
described here occurs. Using this filter, the pgava
database can remove data items that do not pass
through the Bloom filter from tableR; thereby,
reducing the exposure of real data items that woatd
have been in the final result. This would also pedu
[R|/|U], which has been shown to vyield better
performance when low. However, this technique
would require that all artificial hash values wotlave
to be generated in such a way that a value thditekas
to an artificial hash value would have to passubto
the Bloom filter. Otherwise, the data warehouse can
easily determine the artificial hash values frorhNe

Transmission Cost Normalized wrt Brute Force Method vs Cost Ratio

ion Cost Normalized wrt Brute Force Method
=

Figure 11. Varying normalized transmission
costs with variable cost-ratio. Target  pye =
0.01 and |R|/|U] =0.1.



How to efficiently generate artificial hash valugih
the Bloom filter constraint remains an open questio
Finally, the hash/noise technique proposed
.. . 2]
currently only works for the equijoin operation.era
may be a need to develop methods to protect the
privacy of data that are processed by general.joins

7. Conclusion 3]

Three challenges in solving the private data
integration problem were presented: (1) privacy, (2
correctness, and (3) efficiency. The use of redativ
information gain addresses the first challenge. To
address the second and third challenges, a camect
efficient technique was described to protect the
privacy of private data of small size when it ish®
integrated with a public database of much greater. s
By making use of predefined hash functions andenois
injection to satisfy any privacy constraints thatiser
may pose, traditional indexing mechanisms can be
used, making the total cost of a distributed join
dominated mostly by transmission costs rather than
search and computational costs.

The hash/noise technique works better for less
uniform public data sets than for more uniform data
sets stored at the public data warehouse. Furtliermo
uniform data distributions require a wider range of
hash functions to be predefined than less unifoata d
distributions.

In comparison to other related approaches, the
hash/noise technique does not assume non-collusion, [g]
does not require downloading the entire data
warehouse table, leverages existing indexing
mechanisms, and provides for finer-grain control of
privacy than simple hashing. The promising initial
results presented show the merit of using hashiny a
noise injection to solve the problem of efficiently
integrating small amounts private data with large
amounts of public data.
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Appendix

Table 1. Notation used.

Notation Meaning

R Private database table

S Public data warehouse table

B Join column

U Domain of columrB values

Goal Final result of join operation

h Hash function

[N(R) st Estimated size of the set of hash values
generated by a hash functibron tableR

h(R) Set of hash values generated by a hash
functionh on tableR

H Range of hash functiam
Set of artificial hash values

N Set sent talw by db, which is the union
of nandh(R)

F Set containing the containing candidate
tuples that may belong ®oal

[V Number of items in some sét

db Private database

dw Public data warehouse

H(X) Entropy of random variablg

RIG(X;Y) Relative information gain over random
variableX whenY is observed.

R Random variable describing the value of
columnB of a tuple in tabl&®

cost Transmission cost normalized with
respect to the brute-force method

Pabs Absolute privacy loss

Prel Relative privacy loss with respect to the
contents of tabl&

(o Cost associated with transmitting a tuple
returned bydw

Ch Cost associated with transmitting a hash

value




